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This paper describes the application of proton NMR spectroscopy as a screening tool for the
determination of the authenticity of orange juices. Principal component and discriminant analyses
were used to discriminate between authentic and nonauthentic (suspect) samples. In one set of
profiles, additions of sucrose, beet medium invert sugar, sodium benzoate could easily be detected.
In another set of data, K-nearest neighbor classification based on the principal component scores
was used to correctly classify at least 94% of samples known to deviate from authentic samples
when measured with analytical techniques such as high pressure liquid chromatography and atomic
absorption spectroscopy. Principal component loading plots and factor spectra were an effective
tool in the interpretation of the differences between the profiles.
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INTRODUCTION

Authentic orange juices are only those juices that are
produced exclusively from the fleshy part of the orange,
with no pulp wash, sugar, preservatives, or other
ingredients added. However, orange juices are a valu-
able commodity so much profit can be made if the
available stock can be made to last a little bit longer.
In daily practice, many different techniques to authen-
ticate orange juices are available. The methods range
from relatively simply to measure parameters such as
the Brix number (density of the juices) and the formol
number (total amino acids) (Park et al., 1983; Vander-
Cook et al., 1983) to more elaborate methods such as
measuring the 18O/16O, 13C/12C, or 2H/1H isotope ratios
to determine whether (beet medium invert) sugar has
been added (Bricout and Koziet, 1987). Another popular
method is HPLC profiling of flavonoid (Perfetti et al.,
1988) and carotenoids (Phillip et al., 1989) compounds
to detect the addition of pulpwash or other adulterants
such as tangarine, mandarin, and grapefruit juices.
The main problem with all these methods is that they

measure only compounds from one specific chemical
class (i.e., only sugars, flavonoids, amino acids, etc.). As
it is impossible to use all possible methods in day-to-
day practice, a choice about which method to use has
to be made based on an educated guess about which
adulteration to expect. A solution to this problem is to
use a very general analytical chemical screening tool
that could detect a much wider range of different
compounds in one sample run. Suspect samples could
then be detected and evaluated by more rigorous
methods as just described.

A possible screening tool is proton nuclear magnetic
resonance spectroscopy (HNMR). In principle, and
depending on the concentration, this technique can
quantitatively and simultaneously detect all proton-
bearing compounds in the samples such as sugars,
flavonoids, amino acids, organic acids, esters, and
ethers. The HNMRmethod is relatively simple, needing
only a basic sample preparation (freeze-drying).
The application of HNMR will, however, generate

spectra that are too complicated to be analyzed visually.
A solution to this problem is to analyze the data by
principal component analysis (PCA; Kowalski and Bend-
er, 1972a,b). With this technique, the dimensionality
of the data is reduced by combining correlated variables
(peaks in the spectrum) to form a new smaller set of
independent (orthogonal) variables called principal
component axes or PCs. These PCs are ordered accord-
ing to their ability to explain the variance contained in
the original data. A projection of the samples into a
space spanned by the first PCs provides insight into the
similarity or dissimilarity of the samples. Unknown or
test samples can also be projected onto this space and
can thus (often visually) be compared with the reference
samples. An additional advantage of this technique is
that by including samples with several known adultera-
tions in the reference set, suspect samples can also be
classified as to the type of adulteration. This classifica-
tion can assist the researcher in the choice of a subse-
quent classical chemical analysis technique, thereby
saving time and money.
A problem in using HNMR to authenticate orange

juices is the small shifts in the position of the NMR
signals due to minor differences in concentration of the
samples and apparatus instabilities. These variations
were fully eliminated by a recently developed NMR
spectroscopy data preprocessing tool called partial linear
fit (PLF; Vogels et al., 1993). This program corrects for
small variations in the position of lines by selecting
small regions from each spectrum, shifting within a
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certain range and comparing them with comparable
regions in the average spectrum. This new screening
method was tested on two sets of orange juice samples.
To demonstrate and study the behavior of this tech-
nique, a set of orange juice samples was prepared from
two authentic samples that we adulterated ourselves
with large amounts of adulterating compounds. To test
the performance of the system in a realistic environment
we analyzed a second set of samples that contained 26
genuine, production grade orange juices (with known
authenticities) from several varieties and regions in
Brazil, South Africa, and Venezuela.

MATERIALS AND METHODS

Materials. The samples were obtained from several reli-
able sources. Set 1 (Table 1) consisted of 10 samples that we
prepared by adulterating two authentic juices; one juice was
adulterated with 1, 5, and 10% beet sucrose, and another with
additions of 1 and 5% beet medium invert sugar (in duplicate)
and 1% sodium benzoate. All additions are expressed as
percentage by weight of the original juice. The second set
(Table 2) was a collection of 26 real orange juice samples that
were tested for their authenticity by the suppliers by estab-
lished authentification methods. From this last set, 13
samples were authentic juices, 3 were pulp washes, and 10
samples deviated from authentic juices when measured by
other analytical techniques such as atomic absorption spec-
troscopy (AAS), ion-exchange chromatography (IEC), or HPLC.
Proton NMR Spectroscopy. From each sample, 5 mL

was freeze-dried overnight. Of each freeze-dried sample, 0.20
g was shaken with 1.0 mL of deuterium oxide and then the
mixture was spun in a table centrifuge for 10 min at 12 000
rpm. The supernatant was then transferred to a 5-mm o.d.
NMR tube and some TSP (sodium salt of trimethylsilylpropi-
onic-2,2,3,3-d4 sulfonic acid) was added as an internal NMR
reference. All spectra were recorded on a Varian UNITY 400
NMR spectrometer operating at a proton NMR frequency of
400 MHz. A typical proton NMR spectrum consists of 512
transients using 64K data points over a 8000 Hz band width
with a 8.4 µs (45°) radio frequency pulse.
The residual water in the spectra was suppressed by pre-

saturating the water signal for 3 s with a low-power, continu-
ous-frequency radio wave, which was just powerful enough to
make the intensity of the water signal equal to the other
signals in the spectrum. Total acquisition time was 1 h. The

signal-to-noise ratio of the spectra was improved by multiply-
ing each free induction decay with an additional exponential
factor corresponding to 0.3 Hz in the Fourier transformed
spectrum. The intensity and position (rounded to the nearest
Hz) of the spectral lines was recorded by a macro with the
standard Varian peak-picking software. To correct for differ-
ences in the signal-to-noise ratio between different spectra,
each spectrum was normalized to unit intensity (sum of the
squared intensities in each spectrum is equal to 1.0) after
eliminating the water peak.
Data Preprocessing. The small variations between the

resonance positions of comparable lines in different spectra
were corrected for by fitting clusters of these lines to the
average spectrum by the PLF preprocessing tool for HNMR
data using a range of 1 Hz (a new cluster is started if the
distance between two lines is larger than 1 Hz) and a
maximum shift of 1 Hz left or right of the original position of
the lines. Measuring each sample in triplicate and reducing
the spectral resolution to 4 Hz resulted in a data set containing
30 objects (samples) with 480 features (different frequencies)
for the samples from set 1 and a second data set containing
78 objects with 542 features for the samples from set 2.
Data Analysis. The data were analyzed by an unsuper-

vised PCA on the variance/covariance data matrix as described
by Kowalski et al. (1972). All calculations were performed on
a SUN Sparcstation 1+ computer, using the EAGLES pattern
recognition program (TNONutrition and Food Research, Zeist,
The Netherlands). A typical data preprocessing/PCA analysis
took ∼3 min.

RESULTS AND DISCUSSION

Visual Analysis. A typical HNMR spectrum of an
authentic orange juice sample is shown in Figure 1.
Close examination of the spectrum reveals the presence
of several readily identifiable compounds, such as
residual water (4.70 ppm), sucrose (5.41 ppm Suc-H1,
4.20 ppm Suc-H3), glucose (5.35 ppm R-Glu-H1, 4.62
ppm â-Glu-H1), fructose (4.10 ppm â-Frc-H6), and malic
acid (4.42 ppm). Comparing the spectra from all juices,
in both sets, many similarities and dissimilarities can
be seen. However, the sheer amount of combined data,
with no obvious relation between the intensities of
certain lines and the authenticity of the juices, makes
a visual analysis of these sets virtually impossible. The
need for multivariate analysis tools such as PCA is
obvious.
Principal Component Analysis of Set 1. One of

the advantages of using PCA to analyse complex mul-
tivariate chemical analysis problems is that allmost all
results can be presented graphically. The position of
the samples can be plotted in a two-dimensional “score”
plot in which similar samples will tend to form clusters
and dissimilar samples will be found at larger distances.
The reliability of these observations will increase if the
two principal component axes that span the space in
the displayed score plot explain a larger proportion of
the variance contained in the original variables.
The location of the 30 objects after the PCA on the

samples from set 1 in Figure 2 (spanned by first two
PCs explaining 34% of the original variance) clearly
demonstrates the power of using this HNMR technique
in orange juice analysis. Despite the relative low total
explained variance of these first two PCs, the score plot
displays (with the exception of the addition of the
sample containing 1% sodium benzoate) well-separated
groups for all the different adulterations examined in
this study. This result suggests that set 1 contains a
relatively simple underlying structure describable by a
few PCs, with a large amount of spurious noise super-
imposed on this base. In this example, where we only
want to give a demonstration of this technique, we limit

Table 1. Description of Orange Juices in Set 1

descriptiona category

authentic juice I 1
juice I + 1% sugar 2
juice I + 5% sugar 3
juice I + 10% sugar 4
authentic juice II 5
juice II + 1% beet medium invert sugar 6
juice II + 5% beet medium invert sugar 7
juice II + 1% beet medium invert sugar (duplo) 8
juice II + 5% beet medium invert sugar (duplo) 9
juice II + 1% sodium benzoate 10
a All concentrations are expressed as percentage by weight.

Table 2. Description of Orange Juices in Set 2

description
(analytical method)a category

no. of
samples

authentic juices 1 13
pulp wash 2 3
low amino acid content (IEC) l 2
presence of D-malic acid (HPLC) 4 5
low proline content (IEC) 5 1
addition of grapefruit (HPLC) 6 1
low potassium content (AAS) 7 1
a IEC, ion-exchange chromatography; HPLC, high-performance

liquid chromatography; AAS, atomic absorption spectroscopy.
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ourselves to an examination of the first two PCs. If we
wanted to classify these samples, selecting only the first
two PCs would be not sufficient. In such a case, we
would first have to establish the number of singificant
PCs by some type of cross-validation and then analyze
all the significant PCs.
In Figure 2 the two authentic juices are seen close

together, but the addition of the three different concen-
trations of beet sugar (1, 5, and 10%) causes a gradual
shift of the position of the related objects toward the
positive end of both PC-1 and PC-2. Addition of 1 and
5% beet medium invert sugar induces a shift of the

objects toward the positive end of PC-1 and the negative
end of PC-2. Obviously, PC-1 is correlated to excess
sugars (sucrose/glucose/fructose) whereas PC-2 is cor-
related to the relative amounts of either glucose,
fructose, or sucrose in the samples. These observations
were confirmed by examining the factor spectra ex-
tracted from the “loading” plot in the direction of both
PC-1 and PC-2 (Figures 3 and 4).
In general multivariate analysis theory, a representa-

tion like Figure 2, in which the samples are projected
onto one or more principal component axes, is generally
referred to as a score plot; Loading plots are the variable
or factor projections onto the principal component axes
in which the position of a variable directly corresponds
to the correlation of that variable with the principle
component it is projected on. A factor spectrum can be
prepared from these loading plots by projecting the
variable vectors in the loading plot onto a counterclock-
wise rotating vector, as proposed by Windig et al. (1983).
A high positive value (long projection length) for a
certain variable on this rotating vector will then cor-
respond to a relative higher concentration of the com-
pound(s) represented by that variable in the selected
direction. Similarly, a negative value for a certain
variable will correspond to a decrease in the relative
concentration for the compound(s) containing that vari-
able in the selected direction.

Figure 1. Example of a typical orange juice HNMR spectrum obtained with water peak suppression.

Figure 2. PCA plot of triplicate 1HNMRmeasurements from
samples in set 1 containing two authentic and eight adulter-
ated orange juice samples. Juice I (1) was adulterated with
1% (2), 5% (3) or 10% (4) sucrose. Juice II (5) was adulterated
with 1% (6) or 5% (7) BMIS, 1% (8) or 5% (9) BMIS (duplo
measurement), or 1% (10) sodium benzoate. Concentrations
are by weight. Numbers in parentheses correspond to the
category assigned to the samples.

Figure 3. Factor spectrum (NMR/PCA function correlations)
in the direction of 0° corresponding to the direction of PC-1.
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Using these rotating vectors the factors (peaks)
contributing to the two PC from Figure 2 can be
analyzed. By selecting the angle parallel to the positive
end of PC-1 (angle ) 0 degrees), as represented in
Figure 3, it can be shown that the positive end of PC-1
has a strong correlation (r g 0.7) with peaks corre-
sponding to the concentration of several organic acids
at 3.95 ppm (quinic acid), 2.92 ppm (malic acid), 2.80
ppm (citric acid), 2.44 ppm (succinic acid) and 2.10 ppm
(acetic acid). The high correlation of PC-1 with these
compounds demonstrates an often neglected, but still
very useful, NMR effect that is comparable to the better
known solvent-induced shifts in an NMR spectrum
described by Jackman et al. (1969). The relative
concentration of a certain compound can influence not
only the height of related peaks, but also the resonance
positions of lines from another compound. The relative
higher concentrations of glucose, fructose, and sucrose
can so shift the positions of the aforementioned organic
acids to a new position that is readily detected by the
PCA. These very small variations (on the order of a few
Hz) can either be compensated for by a reduction in
resolution of the peaks or, as we did, used in the
analysis as a telltale sign of an adulteration. The choice
whether to leave them in or to remove them depends
mainly on the samples under consideration. The small
variations can be useful for studying small sets. For
larger sets, these variations will often add more noise
than information and they should therefore be deleted.
This approach was applied in the analysis of the

second set of samples where these small variations were
eliminated by a simple reduction of the resolution of the
position of the peaks. The peaks at the next level of
correlation (r g 0.5) in Figure 3 correspond mainly to
the signals for glucose at 5.22, 4.62, 3.41, and 2.92 ppm.
The factor spectrum for the negative end of PC-1 is not
included in this first global analysis because it is
overloaded with the majority of peaks in this set and
no obvious correlations between the signals and identifi-

able compounds can be made. The factor spectra
parallel to PC-2 (from Figure 2) and as represented in
Figure 4) reveals a strong correlation between sucrose
(5.41, 4.21, 4.06, 3.81, and 3.67 ppm) and the positive
end of PC-2 (Figure 4A) and an almost equally strong
correlation between the signals of glucose (5.22, 4.62,
3.90, 3.70, 3.40 and 3.21 ppm; r > 0.8) and fructose
(4.09, 3.90, 3.70, and 3.40 ppm; r g 0.7) and the negative
end of PC-2 (Figure 4B).
Despite the very obvious presence of two very char-

acteristic peaks at 7.98 and 7.53 ppm in the samples
containing 1% sodium benzoate, the locations of the
triplicates this sample are not clearly separated from
those of the authentic samples. Apparently, these peaks
do not contribute much to either PC-1 or PC-2 (correla-
tions between the two major PCs and the peaks at 7.98
and 7.53 ppm are 0.46 and 0.05, respectively, for PC-1
and PC-2). Thus, authentic samples that have 1%
sodium benzoate added are not clearly separated from
the authentic samples in the space spanned by these
two axes. This unwanted effect can be remedied by
performing a discriminant analysis (DA) on the PCA
result as described by Hoogerbrugge et al. (1983).
With this PC/DA technique a second PCA is per-

formed on the centroids of the reconstructed triplicate
measurements, resulting in an optimal separation of the
samples. The result of such an unsupervised DA on the
samples in this set is displayed in Figure 5. This figure
excellently demonstrates the power of the DA technique;
all similar samples (duplications and similar concentra-
tions) remain close together, whereas all the different
types of adulterations are well separated both as to the
type and as to the concentration of the added com-
pounds.
Principal Component Analysis of Set 2. The

locations of the 26 samples (measured in triplicate) from
set 2, projected into the plane spanned by the first two
PCs explaining 29% of the variance contained in the

Figure 4. Factor spectrum (NMR/PCA function correlations)
in the direction of (A) 90° and (B) 270° corresponding to the
positive and negative the direction of PC-2, respectively.

Figure 5. Unsupervised DA plot of triplicate HNMR mea-
surements from samples in set 1 containing two authentic and
eight adulterated orange juice samples. Juice I (1) was
adulterated with 1% (2), 5% (3), or 10% (4) sucrose. Juice II
(5) was adulterated with 1% (6) or 5% (7) BMIS, 1% (8) or 5%
(9) BMIS (duplicate measurement), or 1% (10) sodium ben-
zoate. Concentrations are by weight. Numbers in parentheses
correspond to the category assigned to the samples.
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original variables, are shown in Figure 6. The objects
in this plot can be divided into three clusters. The best
separated cluster was, as expected because of the very
different production method, the one containing the
triplicates of the pulp wash samples (category 2 in
Figure 6). A second cluster contains the authentic
samples (category 1). In this cluster, only the triplicates
from one sample (Valencia oranges from South Africa;
marked in Figure 6 with an asterisk) are different from
the other authentic samples. The remaining cluster
(samples from categories 3-7) is more dispersed and
contains the triplicate measurements of the samples
with a wide variety of known deviations from a normal
orange juice composition, as described in Table 2. The
relative proximity of the object scores of these samples
in the plot suggests that all the deviations found by the
classical analysis techniques are just symptoms of the
same problem that is, dilution of authentic juices with
an unknown matrix.
The classification ability and the significant number

of PCs of the NMR/PCA method were obtained by a
cross-validation experiment in which each sample was
removed from the set and the classified against the rest
of the set. The excluded test objects were then classified
using the K nearest neighbor (KNN) method, as de-
scribed by Kowalski and Bender (1972a,b). In this
method, the Euclidean distance between the samples
(using the first P principal component axes) is used as
a measure of their similarity. An unknown or test
sample is classified by comparing and summing the
categories of the K nearest neighbors and then assigning
the category with the highest score to the object under
investigation. The result of this KNN analysis using a
three-category system (1 ) authentic juices, 2 ) pulp
wash, and 3 ) other nonauthentic juices) for 3, 4, 5, 6,
7, 8, 9, 10 nearest neighbors using the first 2, 3, 4, and
76 PCs, respectively, is shown in Table 3. The best
classification ability (i.e., 98.8% of the samples replaced
correctly) was achieved with the first 2 PCs and 3, 4, 9,

or 10 nearest neighbors. So, despite a very low com-
bined explained variance of 29%, this set has only two
significant PCs.
Because we were mainly interested in the potential

of this NMR/PCA technique as a screening tool for
determining the authenticity of orange juices, we per-
formed only a preliminary investigation of the factor
spectra in the direction of the three most distinct
clusters. The factor spectrum in the direction of the
pulp wash samples from Figure 6 is represented in
Figure 7 (rotated over 200°). This plot reveals a high
correlation (r g 0.8) with NMR resonances between 6.95
and 7.30 ppm, indicating a relatively high concentration
of an aromatic compound like naringenine or hesperi-
dine in these samples. The presence of naringenine
could be confirmed by the peaks at 5.05, 3.66, 3.59, 3.10,
and 1.23 ppm. A second group of high-loading features
can be seen at 2.23, 2.28, and 2.29 ppm. These peaks,
together with the cluster of peaks at 1.03 ppm, indicate
an elevated concentration of a (possibly aromatic) ester
of butyric acid in this direction of the plot. In the
direction of the combined cluster of “adulterated”
samples, the factor spectrum (Figure 8; rotated over 90°)
is dominated by several groups of high-loading features
(r g 0.6), almost all of which can be ascribed to either
glucose or fructose. A second group of interest can be

Figure 6. PCA plot of triplicate HNMRmeasurements in set
2 containing 26 samples of which 13 (1) are authentic and 13
are nonauthentic with known deviations of the presence of
pulp wash (2), low amino acid content (3), presence of D-malic
acid (4), low proline content (5), addition of grapefruit (6), and
low potassium content (7). Numbers in parentheses correspond
to the category assigned to the samples.

Table 3. Percentage of Correctly Classified Patterns in
KNN Result of Set 2

Kano. of
PCs
used

explained
variance 3 4 5 6 7 8 9 10

2 29.3 98.7 98.7 96.4 97.4 97.4 97.4 98.7 98.7
3 34.4 96.4 96.4 96.4 96.4 96.4 96.4 96.4 96.4
4 39.1 96.4 96.4 94.9 96.4 94.4 94.4 94.4 94.4
76 (all) 100.0 87.4 84.9 86.1 87.4 86.1 84.9 79.8 78.5

a Number of nearest neighbors used.

Figure 7. Factor spectrum (NMR/PCA function correlations)
in the direction 200°, corresponding to the direction of the pulp
wash samples.

Figure 8. Factor spectrum (NMR/PCA function correlations)
in the direction 90°, corresponding to the direction of the
adulterated non-pulp-wash samples.
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found around 1.55 and 0.90 ppm, indicating a relatively
higher concentration of a compound containing an
isopropyl group as such that present in isoleucine. The
presence of this amino acid can, however, not be proved.
The factor spectrum (Figure 9: rotated over 315°) in the
direction of the cluster containing the authentic samples
primarily contains peaks that can be ascribed to hes-
peridine. The rest of this factor spectrum is a wide
variety of (still) uninterpretable peaks.
Conclusions. We are aware of the fact that the

present limited access to modern high-resolution NMR
spectrometers will severely limit a general adaptation
of this technique to day-to-day testing of orange juices.
The potential advantages of using the NMR/PCA system
as proposed in this paper are, however, still manifold.
For instance, this system reduce the costs of a simple
orange juice screening by a factor of two to three. The
versatility of this method (i.e., its ability to test a lot of
compounds simultaneously) makes adulterations dif-
ficult and therefore unattractive. Furthermore, when
the problem of the long sample preparation are solved
and reduced to (possibly) no sample preparation at all,
this method is a very fast analysis tool, potentially
giving a result within an hour.
In this publication, we have limited ourselves to the

results obtained from data prepared from standard
NMR line listings. Although this approach already
gives excellent results, for future studies with larger
more complicated data sets, it seems prudent to further
develop and investigate more stable NMR descriptors.
A possible way to do this could be to preprocess the
NMR spectra with lineshape enhancement routines, like
Linear Prediction, as was proposed by Gesman et al.
(1990). Considering all the results and taking into

account all remarks, NMR/PCA seems to be a very
promising tool for the authentication and quality control
of fruit juices and other related products.
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Figure 9. Factor spectrum (NMR/PCA function correlations)
in the direction 315°, corresponding to the direction of the
authentic samples.
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